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ON THE THERMOCAPILLARY MOTION OF A 
DROP WITH HOMOGENEOUS INTERNAL HEAT EVOLUTION* 

A.E. REDNIKOV and W.S. RYAZANTSEV 

An approximate analytical solution of the problem of the velocity and 
temperature distribution during the uniform motion of a drop with a 
homogeneous distribution of internal heat sources (sinks) has been obtained 
in the Stokes approximation at a small P&let number. In the case of a 
linear dependence of the surface tension of the drop on temperature, it 
is shown that the thermocapillary effect associated with the motion of 
the drop can lead to the appearance of a tractive force as well as to a 
resistive force. 

The existence of a temperature gradient on the surface of a drop gives rise to a gradient 
in the surface tension and may cause a motion of the drop. Examples of such a motion are 
known in the case when the asymmetry in the temperature distribution leading to the motion 
of the drop is determined by external sources and is not associated with the motion (see /l- 
4/, for example). A quite different situation, when an inhomogeneous temperature distribution 
on the surface of the drop is a consequence of its inherent motion, was first noted in /5/ 
in which a drop with a surface exotendo) thermic reaction was considered. This problem was 
subsequently studied in /6/ and /7/. 

In this paper we investigate a further example of the thermocapillary drift of a drop 
in which the asymmetry in the temperature field only arises on account of the motion of the 
drop and, in turn, brings about this motion. 

Let a drop of a viscous incompressible liquid, within which distributed heat sources 
(sinks) of constant power uniformly act, be located in a viscous incompressible fluid which 
occupies the whole of space. The presence of heat sources (sinks) within a drop may be 
associated, for example, with the occurrence of a bulk chemical reaction or with the radio- 
active decay of the substance of which the drop is composed. It is obvious that, if the drop 
is at rest, the temperature at all points on its surface will be constant and the thermo- 
capillary forces will be equal to zero. In order to establish the possibility of the above- 
mentioned thermocapillary motion, let us consider the problem of the steady-state motion of 
a drop in the Stokes approximation. The solution of this problem enables one to find the 
velocity and temperature distribution in the drop and the medium surrounding it and also to 
obtain an expression for the force acting on the drop due to viscous and thermocapillary 
stresses. The difference in the magnitude of this force from the Stokes force determines the 
degree of development in the asymmetry of the temperature field and the termocapillary forces 
and the conditions for the existence of its thermocapillary drift. 

In a reference frame associated with the centre of mass of the drop, the problem reduces 
tothestationary circumfluence of a drop by a planar parallel flow of a fluid. It is assumed 
that the drop maintains its spherical shape. The velocity and temperature distributions 
possess axial synnnetry with respect to an axis passing through the centre of the dropinthe 
direction of the velocity of the approach stream and a spherical coordinate system is there- 
fore used in the analysis in which the radius r is measured from the centre of the drop 
while the angle 0 is measured from the direction cf the velocity of the approach stream. 
The densities, viscosities, thermal conductivities, and heat capacities of the substances 
comprising the drop and the external medium were assumed to be constant while the surface 
tension was assumed to be a linear function of the temperature. 

Within the framework of the assumptions which have been formulated, the equations and 
the boundary conditions for the velocity and temperature outside of and within the drop can 
be written in the form 

-ppi’Vpi+g.+viAvi=O, divvi=O 

(vlV) T, = xlAT, 

(v,V) T, = x~AT, + Q, Q = &BP,) 
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The subscripts i = 1, 2 refer to the external fluid and the drop respectively, u, is 
the velocity of the approach stream, g is the gravitational force vector (U, and [al must 
be related such that the total force acting on the drop isequal to zero), Vt,pt, Tt and Pf 
are the velocity, pressure, temperature and density, T, is the temperature remote from the 
drop I pi, vi, If, Xf are the coefficients of kinematic and dynamic viscosity, thermal con- 
ductivity and thermal diffusivity, q is the constant power of the heat sources (sinks) per 
unit volume of the drop, c,,j is the heat capacity, a is the radius of the drop, u is the 
surface tension and e, and ea are the unit vectors of the spherical coordinate system. 

After introducing a stream function and changing to dimensionless variables, the equations 
and boundary conditions (1) can be written in the form 

(2) 

(3) 

(4) 

(5) 

(6) 

The distance is referred to a, the stream function to lf,e’ and M is the Marangoni 
nuder. 

The solution of problem (2) with the boundary conditions (31 has the form /8/ 

+I = (+ + _& - i?~.?$) -k$ +z A, (r-n+s - ?‘-“+I) G,,(P) 

n=3 
(‘1 

Eiere, G,x (14 is an n-th order Gegenbauer function of the first kind of degree -'& 
The constants A, A,,A,, . . . still remain undetermined end must be found from condition (4) 
when solving the problem of the temperature distribution. 

By assuming that the numbers Pe and x-'Pe are small, we find an approximate solution 
of the thermal probl.em by the method of matching asymptotic expansions (/9/, for example), 
which were confined to the zeroth- and first-order terms. The solution intheexternal domain, 
the internal domain and within the drop is represented respectively in the following form: 

'pI = @) -+ PeP,, w = so + Peep,,, 9% = so + P-h3 09 

By successively determining the zeroth and first terms of expansions (8) from Eqs.(S) 
in which the stream functions are specified by expressions (7) with the boundary conditions 
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(6) and using the condition for the matching of the internal and external expansions, we 
obtain 

%I = - 

- 

Here, P, (14 is a Legendre polynomial ofthe first kind of degree n and K,,l and K,, 
are expressions, dependent on n,6 and x which are not given here on account of their 
unwieldiness. 

By substituting expressions (7, (9) and (10) in (4), we obtain the values of the con- 
stants A, A,: 

d=-[n(G -&C) + 1+&q[m(t -&x--I)+ 1 +fl]-' 

MP0 
"'=-w* d,=O, n = 3,4,... 

The nature of the dependence of A on the parameter m is shown in Fig.1. Depending on 
the value of the parameter x-1 , the asymptotes of the graph may move into other half planes. 
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Fig.1 Fig.2 

Since the surface tension usually falls as the temperature increases, m>O corresponds 
to the evolution of heat while m<O corresponds to the absorption of heat. 

The force acting on the drop due to the viscous and thermocapillarystresses is equal 

(12) 

We note that the force (12) has been calculated under the assumption of uniform motion 
of the drop which is only possible in the case whenthe total force acting on the drop is equal 
to zero. Since the force (12) is proportional to the velocity and vanishes together with it, 
it is necessary, in order to realize the case of uniform motion of the drop, to assume that 
there is a certain lateral force which counterbalances the force (12). 

Depending on the values of the parameters, the force (12) may be both a resistive force 
(in this case a force is necessary in order to maintain the motion, such as a gravitational 
force acting in the direction of the velocity), as well as a tractive force (whereupon a force 
acting in a direction opposite to the velocity must exist in order to maintain the motion). 

Another interpretation of the results obtained is also possible when an external force, 
such as a gravitational force, acting on the drop is specified. In this case, the velocity 
of motion of the drop can be found from the equality of the force (12) to the external field. 

Different qualitative pictures of the circumfluence of the drop (Fig.2) correspond to 
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different values of the constant A. When A > -V, , the picture of the flow around the 
drop is analogoustoa Rybchinskii-Hadamard circumfluence. As the magnitude of A becomss 
smaller, the intensity of the circulation of the fluid within the drop falls off and vanishes 
when A = -3/a . AB A becomes still smaller (A < -'/2) a circulation zone forms around the 
drop and the external radius of this zone is given by the relationship 

r, = I/, ) A + 1 1 [I + (1 + 41) A + 1 I)‘4 

The direction of the internal circulation becomes opposite to the corresponding direction 
in the case of a Rybchinskii-Hadamard case, At the same time, as follows from (12), the 
resistive force acting on the drop exceeds the Stokes force acting on a hard sphere. 

In the limiting case when B--F 00 
high viscosity), 

(the substance of which the drop is comprised has a 
the thermocapillary effect has no influence on the motion, A -+ -Vz, and 

there will be a flow around the drop as if it were a solid sphere and Stokes law is obtained 
from (12). When M = 0 (the absence of heat sources or when the surface tension is indepen- 
dent of temperature), or 6+ 00 (a high thermal conductivity of the substance constituting 
the drop), there is no thermocapillary effect since the temperature is constant along the 
surface and the usual expressions for the circumfluence of a drop and the resistive forces 
acting on it /0/ are obtained from (7) and (12), taking account of (11). 

We note that relationships (11) for constant A,, (n = 3, 4, . ..) are not universal in 
the sense that, for each number n =3,4,, . . , there are isolated values of the parameter m 
(we shall denote them by rn,,, n = 3, 4, . ..) for which the corresponding constant A,, may not 
be equal to zero. When m = mnr the algebraic equation for determining the constant A,, 
corresponding to this number is reduced to the form O-A, = 0 and the constant A,, can take 
arbitrary values. Further investigation of this question is only possible on the basis of 
higher order approximations with respect to the Reynolds and P&let numbers. 

At certain values of the parameter m = m, and m = m,,, the constant A may respect- 
ively vanish or become infinite. If A = 0, the force acting on the drop due to viscous 
and thermocapillary stresses vanishes and, in the approximation considered ‘here, the analysis 
which has been presented is only correct in the case when there is no gravitation, when the 
velocity of the motion may be arbitrary, and in order to obtain its actual value it is 
necessary to carry out the analysis using higher-order approximations. If a non-zero mass 
force is specified, the analysis which has been carried out will be incorrect in the case of 
values of the parameter m from a certain neighbourhood of the value m=m,. As the 
magnitude of the mass force decreases, this neighbourhood also becomes smaller and, in the 
limit, contracts to a point, 

If A + m (m = m,,), then, in any finite gravitational field, the drop will remain at 
rest (that is, u, = 0) and, at the same time, the flow outside of and within the drop is 
represented in dimensional variables in the form 

Y = g @a - PJ aW, 

Here g is the magnitude of the gravitational acceleration (g> 0, if the gravitational 
force is directed along the axis from which the angle 0 is measured, and g<O otherwise). 

As a result of this motion a force acts on the drop which compensates the mass force. 
In the other approach to the formulation of the problem, when the velocity (i, is assumed 
to be specified and the mass force required to maintain the motion is calculated from relation- 
ship (12), the analysis carried out in this paper will be incorrect for values of the par- 
ameter m fromia certainneighbourhood of the value of m = m**. As the velocity decreases, 
this neighbourhood also becomes smaller and, in the limit,contracts to a point. The remarks 
concerned with the vanishing of the constants A, A,(n = 3, 4, . ..) and the constant A 
becoming infinite may also pertain to /5, 6, lo/. 

In the formulation of problem (Z)-(6) , the boundary condition for the normal stresses, 
which was not required in order to find the flow around the drop, was omitted, The pressure 
distribution is also obtained but no use is made of it /8/. It can be shown that, on sub- 
stituting already known solutions for the stream function and pressure, this boundary condition 
becomes an i&entity. This means that, in the approximation which is being considered, the 
drop remains strictly spherical and an analysis of its shape would have to be carried out 
using higher-order approximations. 

The presence of a tractive force which is proportional to the velocity may serve as an 
indication of the instability of the state of rest or the uniform motion of the drop or, in 
other words, at those values of the parameters of the problem at which the constant A is 
positive, the stationary regimes of the motion which have been found will apparently be 
unstable. At the same time it is possible to postulate the existence of other stationary 
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regimes of the motion which, fundamentally, are not found within the framework of the Stokes 
nature of the flow and the smallness of the numbers Pe and x-'Pe (except when the constant 
A is close to zero) and, in order to find them, it is necessary to get rid of at least one of 
these assumptions. In particular, it follows from this that a drop which is initially at 
rest in the absence of gravitation cannot maintain this state of rest, and begins to drift 
in a random direction. 

In essence the stability of the mode which has been considered above and corresponds to 
a Gegenbauer function G,(p) (in the expressions for the stream function (7)) and to a 
Legendre polynomial F1 (IQ (in expressions for the temperature (10) 1, since it only makes 
a contribution to the force (12) and affects the translational motion of the drop. However, 
it should be kept in mind that the instability can also develop in higher-order modes (G,,+l (PL) 
and F,, (IL). n > 2). Evidence for this comes, in particular, from the fact that the coefficients 
A,(n> 3) differ from zero for certain values of the parameters of the problem and, generally 
speaking, the negativeness of the constant A is not sufficient but only necessary for 
stability. A more detailed discussion of these questions lies outside of the scope of this 

paper. 
In concluding we shall indicate two further problems on the thermocapillary motion of 

a drop, the solutions of which, using the simplifying assumptions adopted here, can be 
directly established from the results which have been obtained above. Let us consider the 
thermocapillary motion of a drop when the heat sources (sinks) of constant intensity j are 
not located in the bulk but onthesurface of the drop. It is readily shown that the results 
corresponding to this case are obtained if one formally puts 

x-1 = 0 , q = 3Jla 

in all of the relationships referring to the case of homogeneous internal heat evolution. 
Let us also consider the thermocapillary motion of a drop when the heat sources (sinks) 

of constant power are located not within but outside of the drop. Although the temperature 
field will be Inon-stationary with such a distribution of heat sources, it is readily 
established by making the substitution Ti' = Ti - T, - (P'I(c&>*)(t - to) intheinitial system 
of equations which takes account of the homogeneous heating of the whole medium that the 
results which have previously been obtained are also applicable in this case with the sole 
difference that it is now necessary to understand the quantity q as 

Q = -ap', a = cI+pIzz;(cIpI) 

Here T, is the temperature remote from the drop at a certain instant of time tO, t 
is the time and q’ is the constant power of the heat sources (sinks) per unit volume of the 
external field, 
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